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RESEARCH MEMORANDUM

AERODYNAMICS OF SLENDER BODIES AT MACE NUMEER OF 3.12 AND
REYNOLDS NUMBERS FROM 2x106 TO 15x10%
V - AFRODYNAMIC LOAD DISTRIBUTIONS FOR A SERTES OF
FOUR BOATTATLED BODIES

By Barry Moskowltz and John R. Jack

SUMMARY

An experimental investigation to determine the aerodynemic load
distributions of a serles of four boattalled bodles of revolution was
conducted in the NACA Lewls 1l- by l-foot supersonic wind tunnel.
Pressure dlstributions and viscous drags were determined at a Mach

nmumber of 3.12 for a Reynolds number range of 2x106 to 14x10° and ror
an angle of attack range of 00 to 9°.

Significant Reynolds number effects were noted only for an Inorease

in Reynolds number fram 2x106 to 8x10% where Por zero angle of attack
the boattail pressure dlstribution level and the base pressure decreased.
Varying the boattall fineness ratio from 2 to 6 resulted in a decrease
In base pressure and an lncrease ln boattall pressure distrlbution level.

The second-order theory of Van Dyke adequately predlcted pressure
distributions for all models at zero angle of attack. The hybrid
theory for engle of attack ylelded acceptable agreement for reglons
considered free of the effects of cross-flow separation, best agree-
ment belng obtained on the lower surface for smell angles of attack.

INTRODUCTTON

As part of a systematlc program to extend the baslc Information
on aerodynamics of bodles of revolution and to assess the wvalidity of
several theories for predloting pressures and foroes acting on bodies,
tests are belng conducted in the RACA Lewis 1- by 1l-foot supersonic
wind tunnel. The first four parts of this investlgatlon are reported
in references 1 to 4. References 1 and 4 report the complete aerodynamic
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characteristics of a series of four bodles having near-parabollc noses.
In reference 2, the load distributions of a serles of flve bodles
having conical or slightly blunted noses and cylindrical afterbodies
are investigated. The boundary-layer development and the forces
acting on a typlcal oone-cylinder body of revolution are reported in
reference 3. Presented herein ere the aserodynamic characteristics of
a series of four boattalled bodies at a Mach number of 3.12 for Rey-

nolds numbers from 2x106 to 14x10® (based on model length) and angles
of attack from 00 to $°.

Pressure distributions were obtained for all models at a Reynolds
number of 14x10€ and at Reynolds numbers of 2x106 to 8x106 for a
representive model. Visoous forces were obtalned for the represent-
ative model over the Reynolds number range. The experlmentally
determined pressure distributions for all models are oompared with a
second-order theory for zero angle of attack. The iIncremental pressure
distributions due to angle of attack for the representative model are
compared with a hybrid theory.

SMBOIS

The following symbols are used in this report:

Cp drag coefficient, D/q_oni‘:'i2

Cp preasure coefficient, p-po/g,o

D drag force

d maximum body dlameter

1 length of model .
ig length of model boattall

ZF length of model forebody

P sbatlo pressure

po free-gtream static pressure

1, free-stream dynemic pressure, (1/2)9012102
R maximum body radlus

Re Reynolds number, DOUOZ/u

3216
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Uo free-gtream veloolty

x,r,0 cylindrical coordinates

o angle of attack, deg
43 viscoslty cocefflclent
po Pree-gtream density
Subsoripts:

b basge

by friction

D pressure

o angle of attack

APPARATUS AND PROCEDURE

The investligation was conducted In the KACA Lewls 1l- by l-foot
supersonic wind tunnel, which is a nonreturn, continuous flow, vari-
able pressure tunnel operating at a Mach number of 3.12. Inlet pres-
sures may be varled fram 6 to 52 pounds per square inch absolute at a
stagnetlon temperature of approximately 60° F. For the lowest pres-
sure, the speciflic humlidlty of the air supplied to the tunnel was

approximately 2x10-4 pounds of water per pound of dry alr, thus min-
imizing the effect of oondensation. The free-stream Reynolds number

has & range of approximately 1x106 to 8x10°% per foot.

S8ketches of the models Investigated with pertinent dimensions

are presented in fligure 1. The defining equetions for the forebodles
are

513/4
r x x
= 2 0.5 ~ (1—0—5) for 0<x<10.5

= 1 for 10.5<x< start of boattall

]
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Three of the boattails have tangent parabolio profiles defined by

2
r_q. ;(? - 1%) o
R 2 IB

The fourth body hes a 7.13° conical boattail of fineness reatio 2. The
fineness ratio of the parabollic boattalls are 6, 4, and 2 and the over-
all body fineness ratio is 12. The models were machined from steel
and were polished to a 1l6-mioroinch finlsh. REach model was supported
from the rear using a sting-splltter-plate mounting as showm In figure
2. There 1s a small effect of the splitter plate on the base pressure
(see ref. 5).

3216

Axial pressure dlstrlbutions on the boattaile were determined
from two rows of statlic-pressure orifices placed 90° apart. Meri-
dional pressure dlstributions were obtalned for selected axisl sta- X
tions through oriflces placed 30° apart. To keep the amount of -
Instrumentation to a minlmum, the models were instrumented In one
quadrant only and then tested at both positive and negatlive angles ‘
of attack so that pressure distributions would be complete with .
respect to the meridien angle. Base pressures were determined from _
three statio-pressure orifices placed 45° apart. .

The boundary-layer data for zero angle of attack were obtalned
with the ‘same probe as used in reference 3. Boundary-layer surveys
were made at the start of the boattall and at the base of the model.

Reductlion of Data and Method of Camputation

The free-stream statlic pressure used in reducing the experimental
data to ccefficient form 1s that obtalned from the sidewall of the
tunnel opposite the model vertex position. This pressure was in
close agreement with the static pressure measured on the center line
of the tunnel at the same axial station. Incremental pressure
ooeffiolents due to angle of attack were obtained by subtracting the
meagured values at zero angle of attack from those measured at angle
of attaok.

The second-order theory of reference 5 as applied in reference 7
was used to obtain the theoretical pressure distrlbutions at zero angle
of attack. For angle of attack, theoretical pressure distributlons
were calculated using the hybrid theory suggested In reference € and
were applied in the same manner as that given In reference 5. The N
hybrid theory oconsists of the second-order axial-flow solution of -
reference 6 combined with a first-order cross-flow solution of
reference 8.
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S8kin-friction coeffioclents were calculated using the momentum
equation in the same manner as that given in referemce 1.

RESULTS AND DISCUSSION

Most of the data presented 1s glven for the boattalled section
of the bodles Inasmuch as the forebody has been Investigated in
references 1 and 4. The experimental results cbtained from the models
presented In figure 1 consist mainly of pressure disbtributions at
angles of attack from 0° to 9°. The pressure-distribution results are
discussed for all models at zero angle of attack; however, because
the effects of angle of attack do not vary significantly with the
models, these effects are discussed only for a representative model
(model 2). Also presented 1s the skin-friction drag at zero angle
attack for the representative model.

Pressure Distributions

Zero angle of attack. -~ The experimental and theoretical
varletlions of the pressure coefficlent wlth axial station for all

models &t a Reynolds number of 1¢x10% and at zero angle of attack
are presented 1n figure 3. The agreement between secomd-order theory
of reference 6 and experiment i1s good for the bosttalled bodies. The
level of the boattall pressure distrlibution became less negative

as the boattall flneness ratio was Increased; consequently, the wave
drag wlll decrease with Increasing fineness ratlo. This relation is
indlcated In flgure 4 where the wave drag of the parobolic boattalls

et Reynolds number of 14x105 18 plotted agalnst boattall fineness
ratlo. Also included 1s the wave drag of the conloeal boattall which
1s slightly lower than the equlvalent flneness-ratlio parabolic boattall.

The experlmental and theoretlcal varlation of the axlal pressure
distributlion of model 2 &t zero angle of attack and for the three
Reynolds numbers Investigated 1s presented In figure 5. The agree-
ment between second-order potential theory and experlment is good for

Reynolds numbers of 8x10% and 14x106. The effect of Reynolds number
i1s a slight decrease In pressure as the Reynolds number Ilnocreases from

2x106 to 8x106.

Angle of attack. - The lncremental axial pressure distributions
for the representative model at angle of attack are presented In
figures 6 and 7 for the bottam (6 = 0°) and top (6 = 180°), respectively,
and for the Reynolds numbers Investlgated. Angle-of-attack data
for models 1, 3, and 4 are glven In table I for a Reynolds number of
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14x106, The effect of Reynolds number 1s neglligible except at the
axlal station near the base of the body. At this station, however,
there appears to be no aystematlc Reynolds number effect.

At the bottom of the model (@ = O; fig. 6) agreement between
experiment and the hybrid theory of reference 6 is good at 3° angle
of attaock, while at 90 the experimental Increment In pressure coeffl-
clent due to angle of attack is higher than the theoretical values.
This discrepancy was alsc noted in the investigation of the forebody
of thls model iIn references 1 and 4, and was found to change in
magnitude and position as the axial location of the model was changed in
the tunnel; comsequently, the disagreement was attributed to a tunnel
disturbance. A posslble interaction between thls small local tunnel
disturbance and the separated cross flow might Influence the pressure at
@ of zero for 99 angle of attack and not have much effect at 3° angle
of attack. The dlsagreement between theory and experiment at the top
of the model (fig. 7) is attributed to the direct effects of cross-
flow separation.

The experimental varlatlion of the lnocremental pressure coeffi-
olent due to angle of atteck with meridional angle 1is plotted in
figure 8 at two axial stations on the boattall. At 3° angle of
attack, the trends of theory and experiment are similar except near
the top of the model at the 20.5-lnch station where it appears that
the cross flow has separated. For 9° angle of attack, the poor
agreement for the bottom of the model 1s attributed to the tunnel
disturbance mentloned previously, while the disagreement for the
upper portion is primarily due to cross-flow separation.

Base Pressure

The varlaetion of base-pressure coefficlent with Reynolds number

for model 2 over the angle of attack renge 1s presented in figure
9(a). A large decrease in the base-pressure occurred between the

Reynolds numbers of 2X106 and 8x108. Tnoreasing the Reynolds number
from 8X106 to 14%106 reduced the base pressure slightly at +6° and 3+8°

angle of attack; however, at 0° and +3° angle of attack the opposite
trend was noted. The effect of boattall flneness ratlio upon the

base pressure for a Reynolds number of 14-.>(106 and for the angle-of-
attaok range investigated is 1llustrated in figure S(}). The base
pressure increased with & decrease in the boattall flneness ratio.
The base pressure of the conlcal boattalled body was slightly less
negative then thet of the equivalent parabollc boattalled body at
the higher angles of attack, while at the low angles of attack the
base pressures of the two bodies were about the same. Also presented

5216|
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in figure 9(b) are the results obtained from the method of reference
9 for predicting the base pressure at zero angle of attack. Good
agreement 1s noted only for body 3; however, the theory does predict
the correct trend for the parobolic boattails.

Frlction Drag

In order to complete the investigation of the component dreg
forces contributing to the total dreg of the representative boat-
tailed body, frictiom-drag coefflclents were obtalned from the ex-
perimentally determined displacement and momentum thlcknesses at
the start and at the base of the boattall. The experlmental mean
friction-drag coefficlents for the entire body, based on maximum
cross-gsectional area, are presented in flgure 10 for the range of free-
stream Reynolds numbers investigated. Inoreasing the Reynolds number

from 2x108 to 14)(106 resulted in a decrease in skin frictlion untill

a transition Reynolds number of approximately 6x106 is reached where-
upon the skin friction Increased. To 1llustrate the effect of boat-
tall on the skin friction, the data for a zero boattailled body (ref. 1)
having an identical forebody 1s presented along with the theoretical
flat-plate laminar and turbulent skin-friction coefficlents. The

skin Priction 1s less for the boattalled model than the zero boattalled
model. This difference is probably due to the boattalled model having
less surface area than the model of reference 1.

The contribution of the various component drags to the total drag
Por the representative model at zero angle of attack and at Reynolds

numbers fram 2x10° to 14x10° 1s presented in figure 11. At & Reynolds

number of 14x106 , the pressure drag accounted for 51 percent of the
totel drag, the base drag accounted for 13 percent, and the friction
drag accounted for 36 percent. The total drag of the zero boattailed
body of revolution of referemce 1 is about twlce the total drag

of the representatlive boattailed model; thus polnting out the velue
of boattalling to obtaln a drag reduction.

SUMMARY OF RESULTS

The aerodynamic load dilstributions of four boattalled bodles
of revolution were investigated iIn the NACA Iewls 1- by 1l-foot
variable Reynolds number tunnel at a Mach number of 3.12. The
results may be summarized as follows:

1. At zero angle of attack, increasing the Reynolds number from
2x106 to 8x106 resulted In a slight decrease in the boattall pressure
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distribution level and a large decrease in the base pressure. No
significant Reynolds number effects were noted from 8x106 to 14x106.

2. Increasing the boattall-fineness ratio for the parobolic
boattalls resulted in a more negative value of the base pressure,
end a less negative level of the boattall pressure distributlon.

3. For the conlcal boattall at zero angle of attack, the wave
drag was slightly lower and the base pressure was slightly less
negative than an equivelent finemess-ratlo parabolic boattall.

4. The second-order theory of Van Dyke adequately predloted
pressure dlstributions for all models at zero angle of attack. The
hybrid theory for angle of attack ylelded acceptable agreement for
reglons considered free of the effects of cross-flow separatlom,
best agreement being obtained on the lower surface for small angles
of attack. '

Lewis Flight Propulslion laboratory
National Advisory Coomittee for Aerocnautlcs
Cleveland, Ohio, February 24, 1954
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(a) Model 1.
Jogle of ettack, o = 3° Angle of xttack, a = 8°
Axial Meridisn angle, Axial Moridan engls,
station, e, etation, 8,
X, “E X d..‘
in. 0 30 60 80 [ 120 | 150 | 180 1n. ) 30 60 80 | 120 [ 150 | 180
11 =0 .008 |-0.01] |-0.018 |-0.081 [-0.022| -0.018] -0. 1 0.052| -0.014|-0.027 [-0.073| —0.06S |0.047 |-0-028
15.375 =017 -.028 -u 135.575 1] mrmmmmm | mmawrrm | = OTT | e e e—— -.om
15.75 | -.027| -.cea} -.0m| -.027| -.025| -.0m] -. 15.75 |-.001] -.015| -.054| -.080| -.058| ~.070| -.057
18.125 | -.032 -.030 - 16.185| - 081 |comeae | cammmn | =085} cemena fomreen | -.080
£0.5 -.035| -,084| .02 -.027| -.025] -.020{ -, 20.5 |-.0%6] -.oi8] -.049]| -.00| -.042| -.042| -.050
{b) Model 5.
Angls of sttack, o = 3° Angls of attack, o = §°
Axial Neridisu angle, Axial Maridisn angls,
station, 8, stxtion, a,
Xy deg X, deg
in. 0 50 | 80 | 80 | 120 | 150 | 10 § 1i=- 0 | 30 | 60 | 80 | 120 | 150 | 180
18 -0.024 |-0,084 {-0.050 |-0.031 -o.[-o.om -0.018] 18  |0.000{-0.008|-0.053 -0.069| -0.062 [-0.088 (-0.040
19 -.062 -.058 . ~.045]] 19 =038 commse| cem | = 0P| == e | -.077
£0 -.015| -.076| -.075| -.070 -.osal -.061 -.061f g0 |-.0%]| -.078| -.097| -.082| -.075| -.081| -.
| 20.5 | -.085 -.071 | -.084f 205 |-.08¢|-—covf--eme-] ~.086|-o-en]---—| -.088
(c) Moded. 4.
Aogle of attack, a = 5" Angle of evteck, o = §°
Axisl Maridisn sngle, Axial Meriiian sngle,
station, 8, station, a,
X, deg X deg
in. 0 50 80 90 120 | 130 | 1m0 1n. 0 30 80 2 1120 [250 [ie0 |
18 -0.085|-0.085 [-0.086 1-0.065|-0. -o.otsl-o.oa.a 18 |-0.050|-0.058 -0.087| -0.088]-0.072 |-0.086 }-0.081
19 -.058 -.048|| 19 -.048 -.0B8
20 -.057| -.058| -.054] -.048 -.ou.zl -.ossl -.059} =0 ~.052| -.063| -.076 -.057| -.059| -.060| -.068
20.5 | -.085 -.040 {. | -.o53}l e0.8 | -.088 | -.0s2 -
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Figure 1. - Schematic drawing of models. Maximm body diameter 4, 1.75

inches.
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Figure 3. - Effect of boattsil gsometry on axial pressure dis-
t:r.-:l.h;etion at zero angle of attack and Reynolds number of
14X10°.
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Pressure coefficient, Cp
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(c) Reynolds mmber, 14x10°.

Figure 5. - Effect of Reynolds number on boattail Pressure distribution

for model 2 at zero engle of attack.
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Pressure-coefficient Increment due to angle of attack,
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Pigure 8. - Meridional pressure dlstributlion due to angle o:E6
attack for boattall of model 2 at Reynolds mmber of 14%10°.
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Base-pressure coefficient, C
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Figure 9. - Variation of base-pressure coefficient with Reynolds number

and boettail-fineness ratlo.
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Skin-friction-drag coefficient based on
maximm dlameter, CD 2
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Figure 10. - Comparison of skin-friction drag between bosttailed model 2 and zero boattailled
body of reference 1.
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Figure 11. - Variation of total and component drag coefficients with Reyrolds
number for zero angle of attack.
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